SGO1 Maintains Bovine Meiotic and Mitotic Centromeric Cohesions of Sister Chromatids and Directly Affects Embryo Development

نویسندگان

  • Feng-Xia Yin
  • Guang-Peng Li
  • Chun-Ling Bai
  • Yang Liu
  • Zhu-Ying Wei
  • Cheng-Guang Liang
  • Thomas D. Bunch
  • Lin-Sen Zan
چکیده

Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis

Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromer...

متن کامل

The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes.

Chromosome alignment on the mitotic spindle is monitored by the spindle checkpoint. We identify Sgo1, a protein involved in meiotic chromosome cohesion, as a spindle checkpoint component. Budding yeast cells with mutations in SGO1 respond normally to microtubule depolymerization but not to lack of tension at the kinetochore, and they have difficulty attaching sister chromatids to opposite poles...

متن کامل

Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis.

Sister chromatids in mammalian cells remain attached mostly at their centromeres at metaphase because of the loss of cohesion along chromosome arms in prophase. Here, we report that Bub1 retains centromeric cohesion in mitosis of human cells. Depletion of Bub1 or Shugoshin (Sgo1) in HeLa cells by RNA interference causes massive missegregation of sister chromatids that originates at centromeres....

متن کامل

A REC8-Dependent Plant Shugoshin Is Required for Maintenance of Centromeric Cohesion during Meiosis and Has No Mitotic Functions

During meiosis, sequential release of sister chromatid cohesion (SSC) during two successive nuclear divisions allows the production of haploid gametes from diploid progenitor cells. Release of SSC along chromosome arms allows first a reductional segregation of homologs, and, subsequently, release of centromeric cohesion at anaphase II allows the segregation of chromatids. The Shugoshin (SGO) pr...

متن کامل

Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells

Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passeng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013